Define-se geometricamente a razão áurea do seguinte modo: O ponto C da figura abaixo divide o
segmento AB na razão áurea quando os valores AC/AB e CB/AC são iguais. Esse valor comum é
chamado “razão áurea”.
A
B
A razão áurea, também denominada proporção áurea, número de ouro ou divina proporção,
conquistou a imaginação popular e é tema de vários livros e artigos. Em geral, suas propriedades
matemáticas estão corretamente enunciadas, mas muitas afirmações feitas sobre ela na arte, na
arquitetura, na literatura e na estética são falsas ou equivocadas. Infelizmente, essas afirmações
sobre a razão áurea foram amplamente divulgadas e adquiriram status de senso comum. Mesmo
livros de geometria utilizados no ensino médio trazem conceitos incorretos sobre ela.
Trecho traduzido e adaptado do artigo de G. Markowsky, Misconceptions about the golden ratio,
The College Mathematics Journal, 23, 1, january, 1992, pp. 2-19.
a) Reescreva o trecho “(...) mas muitas afirmações feitas sobre ela na arte, na arquitetura, na
literatura e na estética são falsas ou equivocadas”, substituindo a conjunção que o inicia por
“embora”, com as devidas alterações.
b) O verbo da oração “Infelizmente, essas afirmações sobre a razão áurea foram amplamente
divulgadas” está na voz passiva analítica. Reescreva-a com o verbo na voz passiva sintética,
fazendo as devidas alterações.
c) Na figura presente no espaço destinado à resposta desta questão, o polígono ADEFG é um
pentágono regular. Utilize semelhança de triângulos para demonstrar que o ponto C da figura
divide o segmento AB na razão áurea.
NS