Aguarde...
Aguarde...
Pronto! Agora aguarde a página ser recarregada.

Exercício 5251

Entrar
Assine Já!
Seu período de teste expirou!
Nova funcionalidade: Provas

Agora você pode fazer provas completas de vestibulares anteriores. Quer conhecer?

Estamos criando um canal no Youtube.

Se inscreva e aprenda o que mais cai de uma forma jamais vista

(USP - 2011)Número Original: 16Código: 5251

Segunda fase - Segundo dia

Interdisciplinar Semelhança de Triângulos UFO (Linguagens e Códigos) Rec
Informar Erro na Classificacao das Questões
Estes assuntos não são relacionados a questão? Discorda dessa classificação?

Questão de Vestibular - USP 2011
Exibir texto da questão

Define-se geometricamente a razão áurea do seguinte modo: O ponto C da figura abaixo divide o segmento AB na razão áurea quando os valores AC/AB e CB/AC são iguais. Esse valor comum é chamado “razão áurea”. A B A razão áurea, também denominada proporção áurea, número de ouro ou divina proporção, conquistou a imaginação popular e é tema de vários livros e artigos. Em geral, suas propriedades matemáticas estão corretamente enunciadas, mas muitas afirmações feitas sobre ela na arte, na arquitetura, na literatura e na estética são falsas ou equivocadas. Infelizmente, essas afirmações sobre a razão áurea foram amplamente divulgadas e adquiriram status de senso comum. Mesmo livros de geometria utilizados no ensino médio trazem conceitos incorretos sobre ela. Trecho traduzido e adaptado do artigo de G. Markowsky, Misconceptions about the golden ratio, The College Mathematics Journal, 23, 1, january, 1992, pp. 2-19. a) Reescreva o trecho “(...) mas muitas afirmações feitas sobre ela na arte, na arquitetura, na literatura e na estética são falsas ou equivocadas”, substituindo a conjunção que o inicia por “embora”, com as devidas alterações. b) O verbo da oração “Infelizmente, essas afirmações sobre a razão áurea foram amplamente divulgadas” está na voz passiva analítica. Reescreva-a com o verbo na voz passiva sintética, fazendo as devidas alterações. c) Na figura presente no espaço destinado à resposta desta questão, o polígono ADEFG é um pentágono regular. Utilize semelhança de triângulos para demonstrar que o ponto C da figura divide o segmento AB na razão áurea. NS




Adicionar Questão à Lista
Você ainda está aí?

Sim
O que você gostaria de encontrar?