3 1 4 2cos(2x) cos! (x)-sen” (x) Considerando as matrizes 4=/0 -l 2 |, B= T e a fungao f —3 sen| 2x+— 4 1 0 2 definida por f (x) = det( 4) + det(B), então a soma de todas as raízes reais de f que pertencem ao intervalo |0,z| é: A.() 27 B.()37 C.() O D.() 7 E.( ) N|a
Equações e Inequações Trigonométricas
Seja x um número real, 0
Seja x real tal que cos x = tan x. O valor de senx é a) (V3-1)/2. b) (1-v3/2. c) (V5-1)/2. d) (1-V5)/2.
O conjunto solução da inequação 2cosºx+sen x > 2, no intervalo [0, 1], é Jog [B] |2 51 mY o]o s[u] sel oifo sf a Jo.2[u] ¥.«[
Seja x um número real tal que senx + cosx = 0,2. Logo, |senx — cos x| é igual a a) 0,5. b) 0,8. c) 1,1. d) 1,4.
Considere a função real f, de variável real x, definida pelo seguinte determinante: 2cosx) 2 1 2cos(x) fx) = | paraO